Aliran Potensial – Sebuah Source (Sumber)

Untuk menganalisis aliran pada sebuah bidang datar yang diasumsikan bahwa alirannya inviscid (fluida tanpa viskositas) dan inkompresibel, maka teori aliran potensial mampu memberi gambaran berdasarkan asumsi-asumsi tersebut. Berikut ini akan dibahas mengenai aliran potensial yang terdiri satu titik sumber yang terletak dekat dengan dinding.

Sebuah sumber berkekuatan m terletak pada jarak l dari sebuah dinding padat vertikal seperti ditunjukkan pada gambar. Potensial kecepatan untuk aliran tak mampu-mampat, tak berotasi ini diberikan oleh

Pada persoalan ini kita harus menunjukkan bahwa tidak ada aliran menembus dinding berdasarkan analisis pada persamaan di atas. Kita juga akan menentukan distribusi kecepatan sepanjang dinding, dan distribusi tekanan sepanjang dinding. Asumsikan bahwa p = p0 jauh dari sumber dan abaikan efek berat fluida pada tekanan.

image-1

Komponen kecepatan U

Misalkan

maka

Jika diferensial partial diambil pada ln(N) terhadap x


Demikian juga

Sehingga

Dengan demikian substitusi x = 0 akan menghasilkan u = 0. Hal ini berarti tidak ada komponen kecepatan u pada dinding.

Selanjutnya dihitung komponen kecepatan v

Pada dinding x = 0, sehingga komponen kecepatan v

Untuk menentukan distribusi tekanan sepanjang dinding (x = 0), dapat digunakan persamaan Bernoulli (aliran tak berotasi dan tak mampu-mampat). Pada titik jauh tak berhingga y mendekati tak berhingga maka p = p0, jadi

Karena pada y mendekati tak terhingga v_\infty=0, maka

Sumber soal diambil dari Mekanika Fluida, Bruce Munson, terbitan Erlangga.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s